Main Article Content


COVID-19 is one of the topics that is being discussed intensively. The virus which was declared a global pandemic on March 11 by WHO caused around 2.09 million Indonesians to be infected with the COVID-19 virus. To overcome this, the government carried out a vaccination program. The data taken for this study is public opinion about the COVID-19 vaccine written on Twitter. The number of opinions written on Twitter requires classification according to the sentiments they have, whether they tend to be negative opinions or positive opinions using lexicon-based The idea of this research is to classify the covid vaccination dataset using the naive Bayes classifier method and visualization using word cloud. Crawling to obtain the dataset from Twitter, text pre-processing and labelling to determine the positive and negative classes, TFIDF feature extraction, data splitting with a percentage of 80% for train data and 20% for data testing, and finally classification using nave Bayes are the stages in this research The system's sentiment analysis research yielded significant results, the accuracy value is 73.1%, the precision value is 73% and the recall value is 83%.

Article Details

Author Biographies

Nabilah, Trisakti University

Department of Informatics Engineering

Anung, Trisakti University

Department of Informatics Engineering

How to Cite
Putri Aprilia, N., Pratiwi, D., & Barlianto Ariwibowo, A. (2021). Sentiment Visualization of Covid-19 Vaccine Based On Naive Bayes Analysis. Journal of Information Technology and Computer Science, 6(2).


  1. G. A. Buntoro, “Analisis Sentimen Hatespeech Pada Twitter Dengan Metode Naïve Bayes Classifier Dan Support Vector Machine,” J. Din. Inform., vol. 5, no. 2, pp. 1–18, 2016, doi: 10.1016/j.cya.2015.11.011.
  2. WHO, “Virtual press conference on COVID-19 – 11 March 2020,” J. Phys. A Math. Theor., vol. 44, no. 8, pp. 1–9, 2020, doi: 10.1088/1751-8113/44/8/085201.
  3. WHO, “WHO Coronavirus Weekly Update,” 2021, [Online]. Available:
  4. I. P. Sari and S. Sriwidodo, “Perkembangan Teknologi Terkini dalam Mempercepat Produksi Vaksin COVID-19,” Maj. Farmasetika, vol. 5, no. 5, p. 204, 2020, doi: 10.24198/mfarmasetika.v5i5.28082.
  5. Kementerian Kesehatan Republik Indonesia, “Program Vaksinasi COVID-19 Mulai Dilakukan, Presiden Orang Pertama Penerima Suntikan Vaksin COVID-19 | Direktorat Jendral P2P,” Kementerian Kesehatan RI, 2021.
  7. E. M. Sipayung, H. Maharani, and I. Zefanya, “Perancangan Sistem Analisis Sentimen Komentar Pelanggan Menggunakan Metode Naive Bayes Classifier,” J. Sist. Inf., vol. 8, no. 1, pp. 958–965, 2016, [Online]. Available:
  8. I. 2017 Kusumawati, “Analisa Sentimen Menggunakan Lexicon Based Kenaikan Harga Rokok Pada Media Sosial Twitter,” Anal. Sentimen Menggunakan Lex. Based Untuk Melihat Persepsi Masy. Terhadap Kenaikan Harga Rokok Pada Media Sos. Twitter, 2017.
  9. I. Liu and Y. A. Sari, “Klasifikasi Hate Speech Berbahasa Indonesia di Twitter Menggunakan Naive Bayes dan Seleksi Fitur Information Gain dengan Normalisasi Kata,” vol. 3, no. 5, pp. 4914–4922, 2019.
  10. F. Kusuma Wardani, R. Valentinus Hananto, and V. Nurcahyawati, “Analisis Sentimen Untuk Pemeringkatan Popularitas Situs Belanja Online Di Indonesia Menggunakan Metode Naive Bayes,” Jsika, vol. 08, no. 01, pp. 1–9, 2019.
  11. Samsir et al., “Naives Bayes Algorithm for Twitter Sentiment Analysis,” J. Phys. Conf. Ser., vol. 1933, no. 1, p. 012019, 2021, doi: 10.1088/1742-6596/1933/1/012019.
  12. C. Villavicencio, J. J. Macrohon, X. A. Inbaraj, J. H. Jeng, and J. G. Hsieh, “Twitter sentiment analysis towards covid-19 vaccines in the Philippines using naïve bayes,” Inf., vol. 12, no. 5, 2021, doi: 10.3390/info12050204.
  13. S. Kumar Singh, P. Verma, P. Kumar, and A. Abdul, “Journal of Critical Reviews Sentiment Analysis of Covid-19 Epidemic Using Machine Learning Algorithms on Twitter,” vol. 7, no. 18, p. 2020, 2020.
  14. C. Author and P. Gupta, “Pr ep rin t n ot pe er r ie we d Pr ep rin t n ot pe er we.”
  15. L. Setyo, “Implementasi Text Mining Untuk Mendeteksi Hate Speech Pada Twitter,” 2019.
  16. M. S. Hadna, P. I. Santosa, and W. W. Winarno, “Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter,” Semin. Nas. Teknol. Inf. dan Komun., vol. 2016, no. Sentika, pp. 57–64, 2016, [Online]. Available:
  17. M. Syarifuddin, “Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan Knn,” Inti Nusa Mandiri, vol. 15, no. 1, pp. 23–28, 2020.
  18. P. Antinasari, R. S. Perdana, and M. A. Fauzi, “Analisis Sentimen Tentang Opini Film Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Naive Bayes Dengan Perbaikan Kata Tidak Baku,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 12, pp. 1733–1741, 2017, [Online]. Available:
  19. E. B. Santoso and A. Nugroho, “Analisis Sentimen Calon Presiden Indonesia 2019 Berdasarkan Komentar Publik Di Facebook,” Eksplora Inform., vol. 9, no. 1, pp. 60–69, 2019, doi: 10.30864/eksplora.v9i1.254.
  20. B. Liu, M. Hu, and J. Cheng, “Opinion Observer: Analyzing and Comparing Opinions on the Web,” Proc. 14th Int. Conf. World Wide Web, pp. 342–351, 2005, [Online]. Available:
  21. F. F. Rachman and S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,” Heal. Inf. Manag. J., vol. 8, no. 2, pp. 100–109, 2020, [Online]. Available:
  22. W. Setyobudi, A. Alwi, and I. P. Astuti, “Sentimen Analisis Twitter Terhadap Penyelenggaraan Gojek Traveloka Liga 1 Indonesia,” Komputek, vol. 2, no. 1, p. 56, 2018, doi: 10.24269/jkt.v2i1.68.