Main Article Content

Abstract

on maps. In general, the map can only be used by users who are can see visually and blind people have difficulty reading the map because there is no map for the visual impairment in 3D. This map has the advantage of being printable so that it is easy to understand and use for blind users. Amid the development of the map, the authors developed a 3D interactive map design that can accommodate the needs of blind users. This development is generated from DSM data through aerial surveys using drones altered to produce a smoother surface so that it can be reconstructed into a 3D design and analysis of the level of texture density and the level of conformity to the real or original shape and reconstruction using aims to improve and model. Shape to fit the 3-dimensional printing process. The voice module is installed using the RFID Tag identification that is embedded in the 3D map and the RFID Reader in the user's hand, with voice data processing. This innovation that has been developed has the advantage of having a 3-dimensional shape that can be felt, texture, shape, and height equipped with braille-shaped markings that are specially made using Riglet for easy reading and sound as a support to improve the blind's people spatial understanding and spatial literacy.

Article Details

Author Biography

Muhammad Arif, Universitas Brawijaya (filkom ub)

Master Student ub
How to Cite
Arif, M., Ramdani, F., & Budi, A. S. (2021). Interactive Design of 3D -Tactile Map for Visual Impairment people. Journal of Information Technology and Computer Science, 6(2), 209–224. https://doi.org/10.25126/jitecs.202162292

References

  1. Ramdani, F. (2017). Pengantar Ilmu Geoinformatika (Pertama). Malang: UB Press
  2. Ramdani, F. (2018). Ilmu Geoinformatika : Observasi hingga Validasi (1st ed.). Malang: UB Press.
  3. Stm, T., Mems, S. T., Mems, S. T., & Otg, U. S. B. (2014). User Manual (Anet3D Printer Guide (January), 1–42. https://www.anet3d.com/wp-content/uploads/2020/07/A8-Plus. Retrieveed 08/03/2020
  4. Zhongyuan, Z. (2012). Research on 3D Digital Map System and Key Technology. Procedia Environmental Sciences, 12(Icese 2011), 514–520. https://doi.org/10.1016/j.proenv.2012.01.311
  5. Brock, A. et al. (2012) Design and user satlsfactlon of Interactive maps for visually impaired people’, Lecture Notes In Computer Science (Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes In BioinfOrmatlcs), 7383 LNCS (PART 2), pp. 544-551. doi: 10.1007/978-3-642-31534-3_80.
  6. Ducasse, J., Brock, A. M. and Jouffrais, C. (2017) Accessible interactive maps f0, visually impaired users, Mobility of Visually Impaired People: Fundamentals and lCTAssistive Technologies. doi: 10.1007/978-3-319-54446-5_17
  7. Yung, E. K. N., Lau, P. Y., & Leung, C. W. (2016). Radio frequency identification. Industrial Communication Systems, 8. https://doi.org/10.1016/j.technovation.2009.05.014
  8. Ibiyemi, A. (2014). Notes of a journal research paper reviewer. (July). https://doi.org/10.13140/2.1.3476.2889
  9. Zeng, L., & Weber, G. (2011). Accessible maps for the visually impaired. CEUR Workshop Proceedings, 792, 61–71. https://doi.org /10.1145/3098279.3125442
  10. Cristina, C., & Gimenes, R. (n.d.). Tactile Map Production for the Visually Impaired User : Experiences in Latin America. 1–8. https://doi.org/10.1007/978-3-642-19522-8_24
  11. Cervenka, P., Břinda, K., Hanousková, M., Hofman, P., & Seifert, R. (2016). Blind friendly maps: Tactile maps for the blind as a part of the public map portal (Mapy.cz). Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9759, 131–138. https://doi.org/10.1007/978-3-319-41267-2_18
  12. Carbonell Carrera, C., Avarvarei, B. V., Chelariu, E. L., Draghia, L., & Avarvarei, S. C. (2017). Map-Reading Skill Development with 3D Technologies. Journal of Geography, 116(5), 197–205. https://doi.org/10.1080/00221341.2016.1248857
  13. Gual-Ortí, J., Puyuelo-Cazorla, M., & Lloveras-Macia, J. (2015). Improving tactile map usability through 3D printing techniques: An experiment with new tactile symbols. Cartographic Journal, 52(1), 51–57. https://doi.org/10.1179/1743277413Y.000000004
  14. Muthulakshmi, L., & Balaji Ganesh, A. (2012). Bimodal based environmental awareness system for visually impaired people. Procedia Engineering, 38, 1132–1137. https://doi.org/10.1016/j.proeng.2012.06.143
  15. Touya, G., Christophe, S., Favreau, J., Ben, A., Touya, G., Christophe, S., … Christophe, S. (2019). Automatic derivation of on-demand tactile maps for visually impaired people : first experiments and research agenda To cite this version : HAL Id : hal-01980146 Automatic Derivation Of On Demand Tactile Maps For Visually Impaired People : First
  16. Simonnet, M., Brock, A. M., Serpa, A., Oriola, B., & Jouffrais, C. (2019). Comparing interaction techniques to help blind people explore maps on small tactile devices. Multimodal Technologies and Interaction, 3(2). https://doi.org/10.3390/mti3020027
  17. Almeida, M. de F., Martins, L. B., & Lima, F. J. (2015). Analysis of Wayfinding Strategies of Blind People Using Tactile Maps. Procedia Manufacturing, 3(Ahfe), 6020–6027. https://doi.org/10.1016/j.promfg.2015.07.716
  18. Papadopoulos, K., Koukourikos, P., Koustriava, E., Misiou, M., Varveris, A., & Elena, V. (2015). Audio-Haptic Map: An Orientation and Mobility Aid for Individuals with Blindness. Procedia Computer Science, 67(Dsai), 223–230. https://doi.org/10.1016/j.procs.2015.09.266
  19. Ramdani, F. (2019). Kuriositas : Metode Ilmiah Penelitian Teknologi Informasi. Malang: UB Press.
  20. Sugiyono. (2017). Metode Penelitian Bisnis (3rd ed.; S. Suryandari, Ed.). Bandung: Alfabeta
  21. Unirank: 10 top universities in indonesia "University of Brawijaya top rank countries 6" .https://www.4icu.org/reviews/2160.htm .Retrieved 17/09/2020.
  22. Universtas Brawijaya: "Fasilitas Kampus" https://ub.ac.id/campus-life/general-facilities/. Retrieved 04/09/2020.
  23. Ramdani, F., Furqon, M. T., Setiawan, B. D., & Rusydi, A. N. (2020). Analysis of the application of an advanced classifier algorithm to ultra-high resolution unmanned aerial aircraft imagery–a neural network approach. International Journal of Remote Sensing, 41(9), 3266–3286. https://doi.org/10.1080/01431161.2019.1688413
  24. Kway, E. H., Salleh, N. M., & Majid, R. A. (2010). Slate and stylus: An alternative tool for Braille writing. Procedia - Social and Behavioral Sciences, 7(2), 326–335. https://doi.org/10.1016/j.sbspro.2010.10.045
  25. Stanco F., Buffa M., Farinella G.M. (2013) Automatic Braille to Black Conversion. In: Baldoni M., Baroglio C., Boella G., Micalizio R. (eds) AI*IA 2013: Advances in Artificial Intelligence. AI*IA 2013. Lecture Notes in Computer Science, vol 8249. Springer, Cham. https://doi.org/10.1007/978-3-319-03524-6_44
  26. Landt, J.: Shrouds of Time: The History of RFID. http://www.aimglobal.org/technologies/rfifid/resources/shrouds_of_time.pdf, Association for Automatic Identifification and Mobility: Retreived 16/08/2020
  27. Juels, A., Pappu, R.: Financial Cryptography, In: Squealing Euros: Privacy Protection in RFID-Enabled Banknotes, Lecture Notes in Computer Science, vol. 2742, pp. 103–121.
  28. Chetouane, F. (2015). An overview on RFID technology instruction and application. IFAC-PapersOnLine, 28(3), 382–387. https://doi.org/10.1016/j.ifacol.2015.06.111
  29. Duroc, Y., & Tedjini, S. (2018). La RFID : une technologie clé au service de l’humanité. Comptes Rendus Physique, RFID: A key technology for Humanity, 19(1–2), 64–71. https://doi.org/10.1016/j.crhy.2018.01.003
  30. Maggino F. (2014) Guttman Scale. In: Michalos A.C. (eds) Encyclopedia of Quality of Life and Well-Being Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0753-5_1218