Optimization of Healthy Diet Menu Variation using PSO-SA
DOI:
https://doi.org/10.25126/jitecs.20172129Abstract
Abstract. Optimal healthy diet in accordance with the allocation of cost needed so that the level of nutritional adequacy of the family is maintained. The problem of optimal healthy diet (based on family budget) can be solved with genetic algorithm. The algorithm particle swarm optimization (PSO) has the same effectiveness with genetic algorithm but PSO is superior in terms of efficiency, PSO algorithm has a lower complexity than genetic algorithm. However, genetic algorithms and PSO have a problem of local optimum because these algorithm associated with random numbers. To overcome this problem, PSO algorithm will be improved by combining it with simulated annealing algorithm (SA). Simulated annealing algorithm is a numerical optimization algorithms that can avoid local optimal. From our results, optimal parameter for PSO-SA are popsize 280, crossover rate 0.6, mutation rate 0.4, first temperature 1, last temperature 0.2, alpha 0.9, and generation size 100.
Keywords: PSO, SA, optimization, variation, healthy diet menu.
References
Afandie, M. N., Cholissodin, I., Supianto, A. A. (2014). Implementasi Metode K-Nearest Neighbor Untuk Pendukung Keputusan Pemilihan Menu Makanan Sehat Dan Bergizi. DORO: Repository Jurnal Mahasiswa FILKOM Universitas Brawijaya, vol. 3, no. 1.
Hamidah, C. P., Cholissodin, I., Nurwarsito, H. (2016). Optimasi Susunan Bahan Makanan Untuk Pemenuhan Gizi Keluarga Menggunakan Hybrid Algoritma Genetika Dan Simulated Annealing. DORO: Repository Jurnal Mahasiswa FILKOM Universitas Brawijaya, vol. 8, no. 26.
Eliantara F., Cholissodin I., Indriati, 2016. Optimasi Pemenuhan Kebutuhan Gizi Keluarga Menggunakan Particle Swarm Optimization. Prosiding Seminar Nasional Riset Terapan (SNRT), Politeknik Negeri Banjarmasin, 9-10 Nopember.
Hartono, A. (2006). Terapi Gizi dan Diet Rumah Sakit, Ed. 2. Jakarta: ECG.
Hassan, R., Babak, C., & Olivier, W. (2004). A Comparison of Particle Swarm Optimization and The Genetic Algorithm. American Institute of Aeronautical and Astronautics, 1-13.
Pratiwi, M. I., Mahmudy, W. F., & Dewi, C. (2014). Implementasi Algoritma Genetika Pada Optimasi Biaya Pemenuhan Gizi. DORO: Repository Jurnal Mahasiswa FILKOM Universitas Brawijaya, vol. 4, no. 6.
Repi, A., Kawengian, S. E., & Bolang, A. S. (2014). Hubungan Antara Status Sosial Ekonomi Dengan Status Gizi Anak Sekolah Dasar Kelas 4 Dan Kelas 5 Sdn 1 Tounelet Dansd Katolik. Universitas Sam Ratulangi Manado, 2.
Rukmana, R. (2003). Usaha Tani Kapri. Yogyakarta: Kanisius.
Sutomo, B., & Anggraini, D. Y. (2010). Menu Sehat Alami untuk Batita dan Balita. Jakarta: Demedia.
Downloads
Published
Issue
Section
License
Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).