Main Article Content
Abstract
Article Details
References
- M. S. Akhtar, D. Gupta, A. Ekbal, and P. Bhattacharyya, “Feature selection and ensemble construction: A two-step method for aspect based sentiment analysis,†Knowledge-Based Syst., vol. 125, pp. 116–135, 2017.
- B. Liu, “Sentiment analysis and opinion mining,†Synth. Lect. Hum. Lang. Technol., vol. 5, no. 1, pp. 1–167, 2012.
- Y. Zhang et al., “Does deep learning help topic extraction? A kernel k-means clustering method with word embedding,†J. Informetr., vol. 12, no. 4, pp. 1099–1117, 2018.
- G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, “Learning from class-imbalanced data: Review of methods and applications,†Expert Syst. Appl., vol. 73, pp. 220–239, 2017.
- L. Muflikhah and D. J. Haryanto, “High performance of polynomial kernel at SVM Algorithm for sentiment analysis,†J. Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 194–201, 2018.
- M. Z. Sarwani and W. F. Mahmudy, “Campus Sentiment Analysis E-Complaint Using Probabilistic Neural Network Algorithm,†J. Ilm. Kursor, vol. 8, no. 3, 2016.
- I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,†J. Mach. Learn. Res., vol. 3, no. Mar, pp. 1157–1182, 2003.
- N. Burns, Y. Bi, H. Wang, and T. Anderson, “Sentiment Analysis of Customer Reviews: Balanced versus Unbalanced Datasets BT - Knowledge-Based and Intelligent Information and Engineering Systems,†2011, pp. 161–170.
- L. Yijing, G. Haixiang, L. Xiao, L. Yanan, and L. Jinling, “Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data,†Knowledge-Based Syst., vol. 94, pp. 88–104, 2016.
- N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,†J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002.
- M. A. Tahir, J. Kittler, K. Mikolajczyk, and F. Yan, “A multiple expert approach to the class imbalance problem using inverse random under sampling,†in International Workshop on Multiple Classifier Systems, 2009, pp. 82–91.
- S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and R. Togneri, “Cost-sensitive learning of deep feature representations from imbalanced data,†IEEE Trans. neural networks Learn. Syst., vol. 29, no. 8, pp. 3573–3587, 2017.
- R. Polikar, “Ensemble based systems in decision making,†IEEE Circuits Syst. Mag., vol. 6, no. 3, pp. 21–45, 2006.
- Z. Sun, Q. Song, X. Zhu, H. Sun, B. Xu, and Y. Zhou, “A novel ensemble method for classifying imbalanced data,†Pattern Recognit., vol. 48, no. 5, pp. 1623–1637, 2015.
- L. Jiang, C. Li, S. Wang, and L. Zhang, “Deep feature weighting for naive Bayes and its application to text classification,†Eng. Appl. Artif. Intell., vol. 52, pp. 26–39, 2016.
- D. M. Diab and K. M. El Hindi, “Using differential evolution for fine tuning naïve Bayesian classifiers and its application for text classification,†Appl. Soft Comput., vol. 54, pp. 183–199, 2017.
- L. Jiang, L. Zhang, C. Li, and J. Wu, “A correlation-based feature weighting filter for Naive Bayes,†IEEE Trans. Knowl. Data Eng., vol. 31, no. 2, pp. 201–213, 2019.
- R. A. Cahya and F. A. Bachtiar, “Weakening Feature Independence of Naïve Bayes Using Feature Weighting and Selection on Imbalanced Customer Review Data,†in 2019 5th International Conference on Science in Information Technology (ICSITech), 2019, pp. 182–187.
- M. N. Injadat, F. Salo, and A. B. Nassif, “Data mining techniques in social media: A survey,†Neurocomputing, vol. 214, pp. 654–670, 2016.
- M. Jiang et al., “Text classification based on deep belief network and softmax regression,†Neural Comput. Appl., vol. 29, no. 1, pp. 61–70, 2018.
- Q. Jiang, W. Wang, X. Han, S. Zhang, X. Wang, and C. Wang, “Deep Feature Weighting In Naive Bayes For Chinese Text Classification,†in Proceedings of CCIS2016, 2016, pp. 1–5.
- A. C. Pandey, D. S. Rajpoot, and M. Saraswat, “Twitter sentiment analysis using hybrid cuckoo search method,†Inf. Process. Manag., vol. 53, no. 4, pp. 764–779, Jul. 2017.
- L. Breiman, “Bagging predictors,†Mach. Learn., vol. 24, no. 2, pp. 123–140, 1996.
- D. H. Wolpert, “Stacked generalization,†Neural networks, vol. 5, no. 2, pp. 241–259, 1992.
- J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tackling the poor assumptions of naive bayes text classifiers,†in Proceedings of the 20th international conference on machine learning (ICML-03), 2003, pp. 616–623.
- L. Bottou, “Large-scale machine learning with stochastic gradient descent,†in Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–186.
- T. Liu, “A novel text classification approach based on deep belief network,†in International Conference on Neural Information Processing, 2010, pp. 314–321.
- B. Zadrozny and C. Elkan, “Transforming classifier scores into accurate multiclass probability estimates,†in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, 2002, pp. 694–699.
- D. Agnihotri, K. Verma, and P. Tripathi, “Variable Global Feature Selection Scheme for automatic classification of text documents,†Expert Syst. Appl., vol. 81, pp. 268–281, 2017.
References
M. S. Akhtar, D. Gupta, A. Ekbal, and P. Bhattacharyya, “Feature selection and ensemble construction: A two-step method for aspect based sentiment analysis,†Knowledge-Based Syst., vol. 125, pp. 116–135, 2017.
B. Liu, “Sentiment analysis and opinion mining,†Synth. Lect. Hum. Lang. Technol., vol. 5, no. 1, pp. 1–167, 2012.
Y. Zhang et al., “Does deep learning help topic extraction? A kernel k-means clustering method with word embedding,†J. Informetr., vol. 12, no. 4, pp. 1099–1117, 2018.
G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, “Learning from class-imbalanced data: Review of methods and applications,†Expert Syst. Appl., vol. 73, pp. 220–239, 2017.
L. Muflikhah and D. J. Haryanto, “High performance of polynomial kernel at SVM Algorithm for sentiment analysis,†J. Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 194–201, 2018.
M. Z. Sarwani and W. F. Mahmudy, “Campus Sentiment Analysis E-Complaint Using Probabilistic Neural Network Algorithm,†J. Ilm. Kursor, vol. 8, no. 3, 2016.
I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,†J. Mach. Learn. Res., vol. 3, no. Mar, pp. 1157–1182, 2003.
N. Burns, Y. Bi, H. Wang, and T. Anderson, “Sentiment Analysis of Customer Reviews: Balanced versus Unbalanced Datasets BT - Knowledge-Based and Intelligent Information and Engineering Systems,†2011, pp. 161–170.
L. Yijing, G. Haixiang, L. Xiao, L. Yanan, and L. Jinling, “Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data,†Knowledge-Based Syst., vol. 94, pp. 88–104, 2016.
N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,†J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002.
M. A. Tahir, J. Kittler, K. Mikolajczyk, and F. Yan, “A multiple expert approach to the class imbalance problem using inverse random under sampling,†in International Workshop on Multiple Classifier Systems, 2009, pp. 82–91.
S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and R. Togneri, “Cost-sensitive learning of deep feature representations from imbalanced data,†IEEE Trans. neural networks Learn. Syst., vol. 29, no. 8, pp. 3573–3587, 2017.
R. Polikar, “Ensemble based systems in decision making,†IEEE Circuits Syst. Mag., vol. 6, no. 3, pp. 21–45, 2006.
Z. Sun, Q. Song, X. Zhu, H. Sun, B. Xu, and Y. Zhou, “A novel ensemble method for classifying imbalanced data,†Pattern Recognit., vol. 48, no. 5, pp. 1623–1637, 2015.
L. Jiang, C. Li, S. Wang, and L. Zhang, “Deep feature weighting for naive Bayes and its application to text classification,†Eng. Appl. Artif. Intell., vol. 52, pp. 26–39, 2016.
D. M. Diab and K. M. El Hindi, “Using differential evolution for fine tuning naïve Bayesian classifiers and its application for text classification,†Appl. Soft Comput., vol. 54, pp. 183–199, 2017.
L. Jiang, L. Zhang, C. Li, and J. Wu, “A correlation-based feature weighting filter for Naive Bayes,†IEEE Trans. Knowl. Data Eng., vol. 31, no. 2, pp. 201–213, 2019.
R. A. Cahya and F. A. Bachtiar, “Weakening Feature Independence of Naïve Bayes Using Feature Weighting and Selection on Imbalanced Customer Review Data,†in 2019 5th International Conference on Science in Information Technology (ICSITech), 2019, pp. 182–187.
M. N. Injadat, F. Salo, and A. B. Nassif, “Data mining techniques in social media: A survey,†Neurocomputing, vol. 214, pp. 654–670, 2016.
M. Jiang et al., “Text classification based on deep belief network and softmax regression,†Neural Comput. Appl., vol. 29, no. 1, pp. 61–70, 2018.
Q. Jiang, W. Wang, X. Han, S. Zhang, X. Wang, and C. Wang, “Deep Feature Weighting In Naive Bayes For Chinese Text Classification,†in Proceedings of CCIS2016, 2016, pp. 1–5.
A. C. Pandey, D. S. Rajpoot, and M. Saraswat, “Twitter sentiment analysis using hybrid cuckoo search method,†Inf. Process. Manag., vol. 53, no. 4, pp. 764–779, Jul. 2017.
L. Breiman, “Bagging predictors,†Mach. Learn., vol. 24, no. 2, pp. 123–140, 1996.
D. H. Wolpert, “Stacked generalization,†Neural networks, vol. 5, no. 2, pp. 241–259, 1992.
J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tackling the poor assumptions of naive bayes text classifiers,†in Proceedings of the 20th international conference on machine learning (ICML-03), 2003, pp. 616–623.
L. Bottou, “Large-scale machine learning with stochastic gradient descent,†in Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–186.
T. Liu, “A novel text classification approach based on deep belief network,†in International Conference on Neural Information Processing, 2010, pp. 314–321.
B. Zadrozny and C. Elkan, “Transforming classifier scores into accurate multiclass probability estimates,†in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, 2002, pp. 694–699.
D. Agnihotri, K. Verma, and P. Tripathi, “Variable Global Feature Selection Scheme for automatic classification of text documents,†Expert Syst. Appl., vol. 81, pp. 268–281, 2017.