Prediction of Rainfall using Simplified Deep Learning based Extreme Learning Machines

Author

Imam Cholissodin, Sutrisno Sutrisno

Abstract

Prediction of rainfall is needed by every farmer to determine the planting period or for an institution, eg agriculture ministry in the form of plant calendars. BMKG is one of the national agency in Indonesia that doing research in the field of meteorology, climatology, and geophysics in Indonesia using several methods in predicting rainfall. However, the accuracy of predicted results from BMKG methods is still less than optimal, causing the accuracy of the planting calendar to only reach 50% for the entire territory of Indonesia. The reason is because of the dynamics of atmospheric patterns (such as sea-level temperatures and tropical cyclones) in Indonesia are uncertain and there are weaknesses in each method used by BMKG. Another popular method used for rainfall prediction is the Deep Learning (DL) and Extreme Learning Machine (ELM) included in the Neural Network (NN). ELM has a simpler structure, and non-linear approach capability and better convergence speed from Back Propagation (BP). Unfortunately, Deep Learning method is very complex, if not using the process of simplification, and can be said more complex than the BP. In this study, the prediction system was made using ELM-based Simplified Deep Learning to determine the exact regression equation model according to the number of layers in the hidden node. It is expected that the results of this study will be able to form optimal prediction model.

Keywords: prediction, rainfall, ELM, simplified deep learning

Full Text:

PDF

References


BPS Jatim. (2014). “Provinsi Jawa Timur Dalam Angka 2014”. http://jatim.bps.go.id/en/?hal=publikasi_detil&id=57.

BMKG Staklim Karangploso Malang. (2015). “Analisis Dinamika Atmosfer Dan Laut Dasarian III Maret 2015 Update 2 April 2015”. http://karangploso.jatim.bmkg.go.id/index.php/analisis-kondisi-dinamika-atmosfer-laut-dasarian/158-analisis-kondisi-dinamika-atmosfer-laut-dasarian-tahun-2015/399-analisis-dinamika-atmosfer-dan-laut-dasarian-iii-maret-2015-update-2-april-2015#axzz3X8h9y4fg&gsc.tab=0.

Roqib, M. (2015). “Sawah Di Bengawan Solo Panen Dini”. http://www.koran-sindo.com/read/985544/151/sawah-di-bengawan-solo-panen-dini-1428289435.

Ekasari, N. (2015). “Mau Tanam? Lihat Katam Versi Baru”. Sinar Tani. April 2. http://tabloidsinartani.com/content/read/mau-tanam-lihat-katam-versi-baru/.

Utomo, Y. W. (2014). “BMKG Akui Prakiraan Cuacanya Masih Kurang Akurat”. Kompas. January 30. http://sains.kompas.com/read/2014/01/30/1628275/BMKG.Akui.Prakiraan.Cuacanya.Masih.Kurang.Akurat.

Dianingtyas, T. (2014). “Akurasi KATAM Masih Rendah”. Sinar Tani. September 2. http://tabloidsinartani.com/content/read/akurasi-katam-masih-rendah.

Ingragustari. (2005a). “Prediksi Curah Hujan Dengan Menggunakan ANFIS”. Lokakarya Nasional Forum Prakiraan, Evaluasi Dan Validasi BMG.

———. (2005b). “Prediksi Curah Hujan Dengan Menggunakan Transformasi Wavelet”. Prosiding Lokakarya Nasional Forum Prakiraan, Evaluasi Dan Validasi BMG.

Nuryadi. (2005). “Validasi Model Prakiraan Jangka Panjang Menggunakan Model Arima”. Lokakarya Nasional Forum Prakiraan, Evaluasi Dan Validasi BMG.

Olatunji, S. O. (2010). “Comparison Of Extreme Learning Machines And Support Vector Machines On Premium And Regular Gasoline Classification For Arson And Oil Spill Investigation”. Asian Journal Of Engineering, Sciences & Technology Vol. 1 Issue 1.

Mwasiagi, J. I. (2016). “The Use Of Extreme Learning Machines (ELM) Algorithms To Prediction Strength For Cotton Ring Spun Yarn”. Journal Fashion and Textiles, vol. 3, Number 1, Springer Nature Switzerland AG. Part of Springer Nature.

Ke, H.-F., Lu, C.-B., Li, X.-B., Zhang, G.-Y., Mei, Y., and Shen, X.-W. (2018). “An Incremental Optimal Weight Learning Machine of Single-Layer Neural Networks”. Hindawi Scientific Programming, vol. 2018, Article ID 3732120, 7 pages, 2018. https://doi.org/10.1155/2018/3732120.

Khellal, A., Ma, H., Fei, Q. (2018) . “Convolutional Neural Network Based On Extreme Learning Machine For Maritime Ships Recognition In Infrared Image”. Sensors 2018, 18, 1490; doi:10.3390/s18051490 www.mdpi.com/journal/sensors

Pang, S. and Yang, X. (2016). “Deep Convolutional Extreme Learning Machine And Its Application In Handwritten Digit Classification”. Hindawi Computational Intelligence and Neuroscience, vol. 2016, Article ID 3049632, 10 pages, http://dx.doi.org/10.1155/2016/3049632.

BMKG Staklim Karangploso Malang. (2018). “Prakiraan Curah Hujan Musim Hujan”. https://karangploso.jatim.bmkg.go.id/index.php/prakiraan-iklim/prakiraan-musim/prakiraan-musim-hujan/prakiraan-curah-hujan-musim-hujan.

Cholissodin, I., Riyandani, E. (2016). “Analisis Big Data”. Fakultas Ilmu Komputer (Filkom), Universitas Brawijaya (UB), Malang.

Madura, J. (2011). “International Financial Management (11th edition)”. Florida Atlantic University. Tersedia di

Nelly, C.J., Weller, P.A. (2011). “Technical Analysis in the Foreign Exchange Market”. Research Division Federal Reverse Bank of St. Louis Working Paper Series.

Rohrer, B. (2016). "How do Convolutional Neural Networks work?". https://brohrer.github.io/how_convolutional_neural_networks_work.html.

Cholissodin I., Sutrisno, Soebroto A. A., Hanum L., Caesar C. A. (2017). “Optimasi Kandungan Gizi Susu Kambing Peranakan Etawa (PE) Menggunakan ELM-PSO di UPT Pembibitan Ternak Dan Hijauan Makanan Ternak Singosari-Malang”. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) FILKOM UB Vol. 4 No. 1, 31-36.

Cholissodin I., Dewi R. K. (2017). “Optimization Of Healthy Diet Menu Variation using PSO-SA”. Journal of Information Technology and Computer Science (JITeCS), accredited by number 21/E/KPT/2018 valid from July 9, 2018 to July 9, 2023.




DOI: http://dx.doi.org/10.25126/jitecs.20183258