Personality Analysis through Handwriting Detection Using Android Based Mobile Device

Author

Waskitha Wijaya, Herman Tolle, Fitri Utaminingrum3

Abstract

Graphology is one of the psychology disciplines which aims to study the personality traits of individuals through interpretation of handwriting. We can get information of one’s personality through graphology. In addition, by using android based mobile device, graphology analysis could show one’s personality faster. This study was conducted by taking 42 samples of handwriting from different backgrounds. The feature used in this study was handwriting margin. Besides, Support Vector Machine method was employed to classify the result feature from extraction process. The result of this study showed the accurate average of the application reached 82.738%.

Full Text:

PDF

References


Arridho, G. K., Endah, S. U, Sugiharto, A. 2013. Analisis Pen Pressure Tulisan Tangan untuk Mengidentifikasi Kepribadian Seseorang Menggunakan Support Vector Machine (SVM). Journal of Informatics and Technology Vol 2 No 3 (66 – 76).

Gazali, W., Nilo L., Harry T. S. 2013. Aplikasi Pengenalan Tulisan Tangan untuk Ekspresi Matematika Berbasiskan Komputer. Jurnal Mat Stat Vol 13 No 2 (85 – 90).

Hermawati, Astuti, F. 2013. Pengolahan Citra Digital Konsep & Teori. Yogyakarta: ANDI Offset.

Hsu, C.W. dan Lin, C.J. 2002. A Comparison of Methods for Multi-class Support Vector Machines. IEEE Transaction on Neural Network, 13(2) : 415-425.

Novianti, F.A dan Purnami, S.W. 2012. Analisis Diagnosis Pasien Kanker Payudara Menggunakan Regresi Logistik dan Support Vector Machine (SVM) Berdasarkan Hasil Mamografi. Jurnal Sains dan Seni ITS, Vol. 1, No. 1 ISSN : 2301-928X.

Nugroho, K. 2013. 1 Jam Belajar Grafologi: Cara Mudah Menganalisis Tulisan Tangan. Semarang: Effhar Offset.

Prasetiawan, E., Sugiharto, A., Endah, S. N. 2013. Analisis Pola Garis Tulisan Tangan untuk Mengidentifikasi Kepribadian Seseorang Menggunakan Support Vector Machine (SVM). Journal of Informatics and Technology Vol 2 No 3 (125 – 133).

Prasetyono, D.S. 2010. Bedah Lengkap Grafologi. Yogyakarta: Diva Press.

Putra, D. 2010. Pengolahan Citra Digital. Jogjakarta: Andi.

Rachman, F dan Purnami, S.W. 2012. Klasifikasi Tingkat Keganasan Breast Cancer dengan Menggunakan Regresi Logistik Ordinal dan Support Vector Machine (SVM). Jurnal Sains dan Seni ITS, Vol. 1, No. 1 ISSN : 2301-928X.

San, Y. S. 2016. Graphology for Recruitment. Yogyakarta: Psikologi Corner.

Santosa, B. 2007. Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Graha Ilmu : Yogyakarta.

Sutoyo, T., Mulyanto, E., dkk. 2009. Teori Pengolahan Citra Digital. Yogyakarta: ANDI Offset.

Vapnik, V dan Cortes, C. 1995. Support Vector Networks. Machine Learning, 20, 273-297.

https://www.idc.com/promo/smartphone-market-share/os. Selasa, 1 Agustus 2017. Pk 15.00WIB.

Rohwana, Ulir dan Irawan, M. Isa. 2013. Pengenalan Tulisan Tangan Huruf Latin Bersambung Secara Real Time Menggunakan Algoritma Learning Vector Quantization. Jurnal Sains dan Seni Pomits Vol. 2, No 1.

Ahmad, Khalid, M., Viard-Gaudin, A.R. 2009. Lexicon-based Word Recognition Using Support Vector Machine and Hidden Markov Model. International Conference on Document Analysis and Recognition.

Widoretno, Sri, Sarosa, M., Muslim, Muhammad Aziz. 2013. Implementasi Pengenalan Karakter Seseorang Berdasarkan Pola Tulisan Tangan. Jurnal EECCIS Vol. 7, No. 2, Desember 2013.




DOI: http://dx.doi.org/10.25126/jitecs.20172237