Optimization of Healthy Diet Menu Variation using PSO-SA

Author

Imam Cholissodin, Ratih Kartika Dewi

Abstract

Abstract. Optimal healthy diet in accordance with the allocation of cost needed so that the level of nutritional adequacy of the family is maintained. The problem of optimal healthy diet (based on family budget) can be solved with genetic algorithm. The algorithm particle swarm optimization (PSO) has the same effectiveness with genetic algorithm but PSO is superior in terms of efficiency, PSO algorithm has a lower complexity than genetic algorithm. However, genetic algorithms and PSO have a problem of local optimum because these algorithm associated with random numbers. To overcome this problem, PSO algorithm will be improved by combining it with simulated annealing algorithm (SA). Simulated annealing algorithm is a numerical optimization algorithms that can avoid local optimal. From our results, optimal parameter for PSO-SA are popsize 280, crossover rate 0.6, mutation rate 0.4, first temperature 1, last temperature 0.2, alpha 0.9, and generation size 100.

Keywords: PSO, SA, optimization, variation, healthy diet menu.

Full Text:

PDF

References


Afandie, M. N., Cholissodin, I., Supianto, A. A. (2014). Implementasi Metode K-Nearest Neighbor Untuk Pendukung Keputusan Pemilihan Menu Makanan Sehat Dan Bergizi. DORO: Repository Jurnal Mahasiswa FILKOM Universitas Brawijaya, vol. 3, no. 1.

Hamidah, C. P., Cholissodin, I., Nurwarsito, H. (2016). Optimasi Susunan Bahan Makanan Untuk Pemenuhan Gizi Keluarga Menggunakan Hybrid Algoritma Genetika Dan Simulated Annealing. DORO: Repository Jurnal Mahasiswa FILKOM Universitas Brawijaya, vol. 8, no. 26.

Eliantara F., Cholissodin I., Indriati, 2016. Optimasi Pemenuhan Kebutuhan Gizi Keluarga Menggunakan Particle Swarm Optimization. Prosiding Seminar Nasional Riset Terapan (SNRT), Politeknik Negeri Banjarmasin, 9-10 Nopember.

Hartono, A. (2006). Terapi Gizi dan Diet Rumah Sakit, Ed. 2. Jakarta: ECG.

Hassan, R., Babak, C., & Olivier, W. (2004). A Comparison of Particle Swarm Optimization and The Genetic Algorithm. American Institute of Aeronautical and Astronautics, 1-13.

Pratiwi, M. I., Mahmudy, W. F., & Dewi, C. (2014). Implementasi Algoritma Genetika Pada Optimasi Biaya Pemenuhan Gizi. DORO: Repository Jurnal Mahasiswa FILKOM Universitas Brawijaya, vol. 4, no. 6.

Repi, A., Kawengian, S. E., & Bolang, A. S. (2014). Hubungan Antara Status Sosial Ekonomi Dengan Status Gizi Anak Sekolah Dasar Kelas 4 Dan Kelas 5 Sdn 1 Tounelet Dansd Katolik. Universitas Sam Ratulangi Manado, 2.

Rukmana, R. (2003). Usaha Tani Kapri. Yogyakarta: Kanisius.

Sutomo, B., & Anggraini, D. Y. (2010). Menu Sehat Alami untuk Batita dan Balita. Jakarta: Demedia.




DOI: http://dx.doi.org/10.25126/jitecs.20172129